您好,欢迎访问东北财经大学管理科学与工程学院!(请使用IE8及以上浏览器访问,360浏览器请开启极速模式) English| 中文| 加入收藏

王晓军
时间:2018年12月15日 信息来源:本站原创 点击:

王晓军


王晓军,讲师,1986年生,工学博士,2016年毕业于东北大学控制理论与控制工程专业。主持国家自然科学基金-青年科学基金项目(No.61702070)。主要研究方向为机器学习、数据挖掘、大数据分析与应用。近年来以第一作者或通讯作者身份发表/录用论文 11 篇,其中英文SCI论文 8 篇,英文EI论文2篇,中文EI论文1篇。部分代表成果如下:

1.    Xiaojun Wang*, Ping Yuan, Zhizhong Mao. Ensemble fixed-size LS-SVMs applied for the Mach number prediction in transonic wind tunnel, IEEE Transactions on Aerospace and Electronic Systems, 51(4):3167-3181, Oct. 2015. (SCI&EI检索) 7’

2.    Xiaojun Wang, Ping Yuan*, Zhizhong Mao. The modified feature subsets ensemble applied for the Mach number prediction in wind tunnel. IEEE Transactions on Aerospace and Electronic Systems, 52(2):863-874, Apr. 2016. (SCI&EI检索)

3.Xiaojun Wang*, Ping Yuan, Zhizhong Mao, Mingshuang You. Molten steel temperature prediction model based on bootstrap feature subsets ensemble regression trees, Knowledge-Based Systems, 101:48-59, Jun. 2016. (SCI&EI检索)

4. Xiaojun Wang*, Mingshuang You, Zhizhong Mao, Ping Yuan. Tree-structure ensemble general regression neural networks applied to predict the molten steel temperature in ladle furnace, Advanced Engineering Informatics, 30(3):368-375, Aug. 2016. (SCI&EI检索)

5. Xiaojun Wang, Ping Yuan*, Zhizhong Mao, Ning Du. The Mach number prediction based on the feature subsets ensemble in transonic wind tunnel. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 230(12):2306-2319, Oct. 2016. (SCI&EI检索)

6. Xiaojun Wang*, Ping Yuan, Zhizhong Mao, Ning Du. Wind tunnel Mach number prediction based on the pruned feature subsets ensemble method, Journal of Aerospace Engineering, 30(4):04017015, Jul. 2017. (SCI&EI 检索)

7. Quan-Yi Zou, Xiao-Jun Wang*, Chang-Jun Zhou*, Qiang Zhang*. The memory degradation based online sequential extreme learning machine, Neurocomputing, 275:2864-2879, Jan. 2018. (SCI&EI 检索)

8. Xiao-Jun Wang*, Xiao-Yan Wang, Qiang Zhang*, Zhi-Zhong Mao. The soft sensor of the molten steel temperature using the modified maximum entropy based pruned bootstrap feature subsets ensemble method. Chemical Engineering Science, 189:401-412, Nov. 2018. (SCI&EI 检索)